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Abstract. Many-Task Computing (MTC) workflow executions involve thousands of 

parallel tasks that consume and produce large amounts of data and are scheduled 

on multiple nodes in a large HPC cluster. A complete run may last for weeks. Us-

ers have to analyze and steer the dataflow at runtime. This introduces several 

challenges for efficient data management without jeopardizing performance. This 

dissertation combines distributed data management techniques (ACID transac-

tions, concurrency control, and database design) to propose a scalable solution 

for MTC workflows. Domain data, dataflow provenance, and workflow execution 

data are managed together in an in-memory distributed DBMS. As a result, a dis-

tributed scheduling via transactions in this database attains high scalability in a 

1,008-cores HPC cluster, while maintaining runtime data analytical capabilities. 

1. Introduction 

Large-scale scientific computations in a wide variety of domains are often modeled as 

Many-Task Computing (MTC) workflows, with thousands of parallel tasks that run on a 

High Performance Computing (HPC) cluster. The tasks produce data elements to be 

consumed by other tasks in a coherent dataflow. A complete workflow execution may 

last for days in a large cluster and process tera or petabytes of complex scientific data. 

Meanwhile, users cannot wait for the workflow to finish so their result data analysis can 

start. They need to correlate input with output, check correctness of their hypotheses, 

modify simulation parameters, debug, visualize the flowing data elements, and steer the 

computation at runtime, maintaining high parallel efficiency of the HPC simulation. 

Since these processes are data-centric, an efficient data management that allows for data 

parallelism in MTC and runtime data analysis without jeopardizing performance is of 

utmost importance.  

 Parallel Scientific Workflow Management Systems (SWMSs) have been em-

ployed to orchestrate workflow executions in HPC [1]. Pegasus [3] and Swift [16] are 

two well-known SWMSs and are the most scalable ones. To allow for result data analy-

sis, they collect distributed data provenance and store in multiple typically unstructured 

log files, which are much harder to query at runtime. Alternatively, they load the log 

files (through an ETL process) into a database for post-mortem analytical queries. Addi-

tionally, task scheduling data (information about each task, which node each task ran, 

CPU and memory consumed by each task) are managed completely separated from da-

taflow provenance and domain data stores. This highly limits analytical capabilities be-

cause users need to analyze the data integrating domain, execution, and provenance 

[10,14]. To cope with this, a data-oriented SWMS solution, called Chiron, was built [6]. 

Chiron adopts a DBMS to manage its scheduling data by updating it while processing 

parallel tasks and storing provenance data in this same database, which we call Work-
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flow Database (wf-Database). Thus, users can query the same database being used by 

the SWMS scheduler, which has been shown to be very beneficial [7,13]. 

 Nevertheless, all this runtime analytical support comes with a price. This data-

oriented SWMS solution relies on a centralized task scheduling data management, using 

a master-workers design where the centralized master node is the only able to access the 

centralized DBMS. This introduces a significant performance overhead at the master 

node [14] highly limiting the system scalability to about 300 cores. Additionally, two 

single points of failure are introduced: the master node and the centralized DBMS, lim-

iting the solution’s fault tolerance. Therefore, we are not aware of a SWMS solution that 

both allows for analytical queries integrating domain data, provenance, and execution at 

runtime and is highly scalable. 

 In this dissertation, we make extensive use of distributed data management tech-

niques (ACID transactions, concurrency control, and database design) to propose 

SchalaDB: a scalable data-oriented distributed task scheduling solution for SWMSs. In 

SchalaDB, all workers directly query and update the wf-Database through SQL. There 

is no centralized master to which workers need to communicate via message passing 

during scheduling. To accommodate multiple workers concurrently querying the wf-

Database, the solution uses an in-memory distributed DBMS (DDBMS) with distributed 

ACID transactions. We implemented SchalaDB by completely redesigning Chiron’s 

traditional centralized scheduling, and we call it d-Chiron. We evaluated it using syn-

thetic benchmarks, and real case studies in oil and gas and bioinformatics in Grid5000 

(www.grid5000.fr) clusters with up to 1,008 cores. As a result, this is the first SWMS 

that achieves high scalability in an HPC cluster of this size while maintaining support 

for rich data analysis at runtime.  These are the main contributions of this dissertation:  

• A scalable design for MTC workflow scheduling driven by a DDBMS. We specify 

how task scheduling and parallel data placement are done to maximize system per-

formance, improve availability, and reduce load imbalance. 

• A concrete implementation of this design in d-Chiron SWMS and performance tests 

on a 1,008-cores cluster. 

• For reproducibility, all executables, instructions to use d-Chiron on an HPC cluster, 

pre-configured workflows, and sample analytical queries are on GitHub [4]. 

2. A Scalable Architecture for Scheduling MTC Workflows Driven by Dis-

tributed Data Management 

This dissertation aims at providing high scalability while maintaining runtime data ana-

lytical support in a SWMS. Data analysis is supported via queries in the wf-Database. It 

follows PROV-Wf, an entity-relationship diagram that models workflow general con-

cepts relevant for provenance data collection. PROV-Wf is based on a W3C recommen-

dation, which facilitates integration and queries using the representation for provenance. 

For example, data from the wf-Database can be published on the semantic web to be 

consumed by different research groups, using different SWMSs [2]. An implementation 

of PROV-Wf in a concrete database schema is on [4]. Since the wf-Database is continu-

ously populated at runtime, it can potentially be queried for data generation tracking, 

monitoring, and other advanced data analyses [7,10,13,14]. Also, a SWMS engine  can 

use this data-oriented approach for runtime optimizations [6] or adaptivity [8]. 
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 To allow for these features, the SWMS engine updates the wf-Database as the 

tasks are created, scheduled, executed, and completed. It has to store all fine-grained 

task-related data in the wf-Database for each task. Thus, both users and the SWMS en-

gine have the most up-to-date possible data available for structured queries. However, in 

MTC, there can be thousands of parallel tasks running, each taking few seconds to 

minutes. When the task scheduler is centralized, there are points of contention and fail-

ure, negatively impacting performance. SchalaDB, however, has a decentralized sched-

uling design and uses an in-memory DDBMS. Although some DDBMSs, like MySQL 

Cluster, are well-known for their efficiency in processing OLTP while being able to run 

OLAP queries [9], their use in MTC scheduling has not been experienced before. 

 Using a DDBMS in an MTC scheduler has several advantages beyond ACID 

transactions controlling multiple concurrent updates during task scheduling. Particular-

ly, DDBMSs that allow for ACID transactions are useful to facilitate data consistency 

control when multiple concurrent updates occur in the task-related data during task 

scheduling. Moreover, DDBMSs enable robust parallel cache memory data manage-

ment. Also, there are DDBMSs that run exclusively in the cluster main memory, avoid-

ing intense disk I/O operations. Data replication and partitioning into multiple nodes are 

also well studied and implemented in many DDBMSs. Considering that a DDBMS al-

ready implements most of these mechanisms usually very efficiently [9], it can be an 

integrant part of an SWMS architecture and alleviate the effort on developing such 

complex controls inside the SWMS engine’s source code. In this way, the SWMS de-

velopers can focus on specific concerns related to dataflow management (e.g., data de-

pendencies between tasks) instead of implementing distributed data management algo-

rithms and dealing with sophisticated distributed concurrency issues and contention at 

scheduling queues. As centralized DBMSs, DDBMS also has query interfaces through 

which users can query the continuously populated wf-Database. Therefore, SchalaDB 

controls the parallel execution of workflows with a distributed task scheduling driven by 

a DDBMS. 

Architecture details. For execution control, the main supporting relation is the Work 

Queue (WQ), which has the list of tasks to be scheduled and their data. SchalaDB dis-

tributes the WQ data across 퐷 data nodes. The data nodes are responsible for managing 

the distributed data partitions playing the role of multiple masters. SchalaDB uses data-

base drivers to implement the connectors. Figure 1 illustrates SchalaDB. 

 It is the main data provider for the SWMS engine’s distributed scheduler so that 

worker nodes can submit queries to retrieve the data to be used in a scheduling decision 

and a task execution. Instead of having workers requesting tasks to a master through 

regular message passing, like in traditional task scheduling implementations, workers 

send structured queries to the DDBMS. Instead of having a master to receive the worker 

request; get the next ready tasks; and send them to the worker, the DDBMS uses its dis-

tributed data nodes to respond the multiple concurrent requests from the workers, di-

minishing contention. Regarding availability, the DDBMS can use replication to repli-

cate all relations, including the WQ relation. Since the wf-Database stores workflow 

control data,  input and output domain data composing the  dataflow, and paths to large 

scientific files stored on disk [6], it is not large and replication in the main-memory is 

viable considering a cluster with multiple nodes, each with at least few gigabytes of 

RAM. If a node hosting a WQ partition fails, there is still at least one extra replica that 

may be utilized. To increase availability in the system, each worker may connect and 
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query the DDBMS via two different database connector communications: the main 

communication, represented by full gray lines in Figure 1 and the secondary communi-

cation by dashed gray lines. If one connector fails, workers connected to it just need to 

connect to their secondary database connector. In addition, the secondary supervisor 

node removes the single point of failure at the supervisor node. Data node’s availability 

is outsourced to the DDBMS. 

  

Figure 1. SchalaDB design. 푾 workers directly accessing the DDBMS composed of 푫 data nodes. 

 

Figure 2. Chiron’s centralized architecture 

relying on a centralized DBMS. 

 

Figure 3. d-Chiron architecture. The gray boxes repre-

sent physical nodes in an HPC cluster. 

 

Figure 4. Centralized scheduling with a 

centralized DBMS. 

 

Figure 5. DDBMS-driven scheduling. 

Distributed Data Design. The WQ is typically the largest data structure for the sched-

uler in terms of number of elements. A distributed database design requires a partition-

ing strategy that matches the desirable number of partitions, and the placement of the 

partitions [9]. To reduce load imbalance, SchalaDB distributes the WQ partitions across 

the data nodes. The number of partitions is equal to the number 푊 of workers. Thus, 

each worker has its own WQ partition to improve data parallelism by using different 

memory spaces in parallel for each partition. Local processing is also improved because 
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task lookup for each worker goes straight to its partition instead querying a large WQ. 

This also reduces race condition among workers, which otherwise would be competing 

for the entire WQ. Each worker 푤& only accesses its own 푊푄&(partition using queries 

like “select/update the next ready tasks in the WQ where 푝푎푟푡푖푡푖표푛( = (푊푄&”. 

 With respect to implementation, after trying multiple DDBMSs, we found that 

MySQL Cluster would be the best fit, since SchalaDB needs OLTP for scheduling and 

OLAP for runtime queries. In addition, it is open-source, scalable, can run fully in clus-

ter memory, and implements ACID transactions. Further details about why MySQL 

Cluster was chosen over other options are discussed in [12]. In Figure 2, we show the 

centralized architecture in Chiron. In Figure 3, we show how we implemented 

SchalaDB in d-Chiron using MySQL Cluster. Figures 4 and 5 show a comparison of 

centralized and distributed task scheduling driven by a centralized and distributed 

DBMS, respectively. We can see that a DDBMS-driven scheduling eases scheduling 

and reduces the overhead caused by message passing between master and workers. 

3. Contributions and Concluding Remarks 

Therefore, we are not aware of a SWMS solution that both allows for analytical queries 

integrating domain data, provenance, and execution at runtime and is highly scalable. 

We proposed a decentralized MTC task scheduler, which is the core of an HPC system, 

using distributed data management techniques aiming at high performance for a SWMS. 

This is the first work that frequently attains over 80% of parallel efficiency running on a 

1,008 cores cluster while managing workflow data in a same database available for 

runtime queries. Observing the tendency of the curves plotted in a comprehensive set of 

performance tests [12], we could see that the solution could still scale if we had access 

to an even larger cluster with at least few thousands of CPU cores. In addition to 

benchmarking workflows, we successfully ran two real workflow case studies: one in 

oil and gas and other in bioinformatics domains. Finally, we show that our implementa-

tion runs at least two orders of magnitude faster than the implementation that uses a 

centralized data management and scheduling [12,15]. Besides the performance gains, by 

using SchalaDB’s scheduling, a complex part of the SWMS engine source code can be 

outsourced to a specialized system, i.e., the DDBMS. This dissertation was developed in 

the context of a set of published works: 

• The core ideas of SchalaDB and some results in d-Chiron were presented in the pres-

tigious ACM/IEEE Supercomputing conference as a poster [15]. 

• An approach to analyze performance data integrated with domain dataflow and prove-

nance was presented in [14]. We could quantify the performance bottlenecks that a 

centralized scheduling was causing in Chiron SWMS. It motivated this work and won 

the second-best paper award in the workshop. It also derived in [10], presented in a 

workshop held in conjunction with ACM/IEEE Supercomputing. 

• A strategy to publish data stored in the wf-Database on the semantic web using ontol-

ogy, RDF, and triple stores was presented in [2], which followed a linked data publi-

cation strategy presented in [11]. It ran for best poster award. It was derived from an 

undergraduate dissertation that I co-supervised. 

• A DDBMS-driven approach for fault tolerance in SWMSs [5]. It is part of an under-

graduate dissertation that I co-supervised. 
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• The results of the dissertation have contributed to a new direction of research related 

to data reduction in scientific workflows, presented in a workshop in conjunction with 

Supercomputing [8]. Even though it has additional work, developed after the disserta-

tion, we consider it a derived result from the scalability of d-Chiron. 
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