

Parallel Execution of Workflows driven by

Distributed Database Techniques

Renan Souza, Marta Mattoso

COPPE – Universidade Federal do Rio de Janeiro (UFRJ)

{renanfs,marta}@cos.ufrj.br

Abstract. Many-Task Computing (MTC) workflow executions involve thousands of

parallel tasks that consume and produce large amounts of data and are scheduled

on multiple nodes in a large HPC cluster. A complete run may last for weeks. Us-

ers have to analyze and steer the dataflow at runtime. This introduces several

challenges for efficient data management without jeopardizing performance. This

dissertation combines distributed data management techniques (ACID transac-

tions, concurrency control, and database design) to propose a scalable solution

for MTC workflows. Domain data, dataflow provenance, and workflow execution

data are managed together in an in-memory distributed DBMS. As a result, a dis-

tributed scheduling via transactions in this database attains high scalability in a

1,008-cores HPC cluster, while maintaining runtime data analytical capabilities.

1. Introduction

Large-scale scientific computations in a wide variety of domains are often modeled as

Many-Task Computing (MTC) workflows, with thousands of parallel tasks that run on a

High Performance Computing (HPC) cluster. The tasks produce data elements to be

consumed by other tasks in a coherent dataflow. A complete workflow execution may

last for days in a large cluster and process tera or petabytes of complex scientific data.

Meanwhile, users cannot wait for the workflow to finish so their result data analysis can

start. They need to correlate input with output, check correctness of their hypotheses,

modify simulation parameters, debug, visualize the flowing data elements, and steer the

computation at runtime, maintaining high parallel efficiency of the HPC simulation.

Since these processes are data-centric, an efficient data management that allows for data

parallelism in MTC and runtime data analysis without jeopardizing performance is of

utmost importance.

 Parallel Scientific Workflow Management Systems (SWMSs) have been em-

ployed to orchestrate workflow executions in HPC [1]. Pegasus [3] and Swift [16] are

two well-known SWMSs and are the most scalable ones. To allow for result data analy-

sis, they collect distributed data provenance and store in multiple typically unstructured

log files, which are much harder to query at runtime. Alternatively, they load the log

files (through an ETL process) into a database for post-mortem analytical queries. Addi-

tionally, task scheduling data (information about each task, which node each task ran,

CPU and memory consumed by each task) are managed completely separated from da-

taflow provenance and domain data stores. This highly limits analytical capabilities be-

cause users need to analyze the data integrating domain, execution, and provenance

[10,14]. To cope with this, a data-oriented SWMS solution, called Chiron, was built [6].

Chiron adopts a DBMS to manage its scheduling data by updating it while processing

parallel tasks and storing provenance data in this same database, which we call Work-

32nd SBBD – CTD – ISBN 978-85-7669-399-4 October 2-5, 2017 – Uberlândia, MG

paper:CTD7

163

flow Database (wf-Database). Thus, users can query the same database being used by

the SWMS scheduler, which has been shown to be very beneficial [7,13].

 Nevertheless, all this runtime analytical support comes with a price. This data-

oriented SWMS solution relies on a centralized task scheduling data management, using

a master-workers design where the centralized master node is the only able to access the

centralized DBMS. This introduces a significant performance overhead at the master

node [14] highly limiting the system scalability to about 300 cores. Additionally, two

single points of failure are introduced: the master node and the centralized DBMS, lim-

iting the solution’s fault tolerance. Therefore, we are not aware of a SWMS solution that

both allows for analytical queries integrating domain data, provenance, and execution at

runtime and is highly scalable.

 In this dissertation, we make extensive use of distributed data management tech-

niques (ACID transactions, concurrency control, and database design) to propose

SchalaDB: a scalable data-oriented distributed task scheduling solution for SWMSs. In

SchalaDB, all workers directly query and update the wf-Database through SQL. There

is no centralized master to which workers need to communicate via message passing

during scheduling. To accommodate multiple workers concurrently querying the wf-

Database, the solution uses an in-memory distributed DBMS (DDBMS) with distributed

ACID transactions. We implemented SchalaDB by completely redesigning Chiron’s

traditional centralized scheduling, and we call it d-Chiron. We evaluated it using syn-

thetic benchmarks, and real case studies in oil and gas and bioinformatics in Grid5000

(www.grid5000.fr) clusters with up to 1,008 cores. As a result, this is the first SWMS

that achieves high scalability in an HPC cluster of this size while maintaining support

for rich data analysis at runtime. These are the main contributions of this dissertation:

• A scalable design for MTC workflow scheduling driven by a DDBMS. We specify

how task scheduling and parallel data placement are done to maximize system per-

formance, improve availability, and reduce load imbalance.

• A concrete implementation of this design in d-Chiron SWMS and performance tests

on a 1,008-cores cluster.

• For reproducibility, all executables, instructions to use d-Chiron on an HPC cluster,

pre-configured workflows, and sample analytical queries are on GitHub [4].

2. A Scalable Architecture for Scheduling MTC Workflows Driven by Dis-

tributed Data Management

This dissertation aims at providing high scalability while maintaining runtime data ana-

lytical support in a SWMS. Data analysis is supported via queries in the wf-Database. It

follows PROV-Wf, an entity-relationship diagram that models workflow general con-

cepts relevant for provenance data collection. PROV-Wf is based on a W3C recommen-

dation, which facilitates integration and queries using the representation for provenance.

For example, data from the wf-Database can be published on the semantic web to be

consumed by different research groups, using different SWMSs [2]. An implementation

of PROV-Wf in a concrete database schema is on [4]. Since the wf-Database is continu-

ously populated at runtime, it can potentially be queried for data generation tracking,

monitoring, and other advanced data analyses [7,10,13,14]. Also, a SWMS engine can

use this data-oriented approach for runtime optimizations [6] or adaptivity [8].

32nd SBBD – CTD – ISBN 978-85-7669-399-4 October 2-5, 2017 – Uberlândia, MG

164

 To allow for these features, the SWMS engine updates the wf-Database as the

tasks are created, scheduled, executed, and completed. It has to store all fine-grained

task-related data in the wf-Database for each task. Thus, both users and the SWMS en-

gine have the most up-to-date possible data available for structured queries. However, in

MTC, there can be thousands of parallel tasks running, each taking few seconds to

minutes. When the task scheduler is centralized, there are points of contention and fail-

ure, negatively impacting performance. SchalaDB, however, has a decentralized sched-

uling design and uses an in-memory DDBMS. Although some DDBMSs, like MySQL

Cluster, are well-known for their efficiency in processing OLTP while being able to run

OLAP queries [9], their use in MTC scheduling has not been experienced before.

 Using a DDBMS in an MTC scheduler has several advantages beyond ACID

transactions controlling multiple concurrent updates during task scheduling. Particular-

ly, DDBMSs that allow for ACID transactions are useful to facilitate data consistency

control when multiple concurrent updates occur in the task-related data during task

scheduling. Moreover, DDBMSs enable robust parallel cache memory data manage-

ment. Also, there are DDBMSs that run exclusively in the cluster main memory, avoid-

ing intense disk I/O operations. Data replication and partitioning into multiple nodes are

also well studied and implemented in many DDBMSs. Considering that a DDBMS al-

ready implements most of these mechanisms usually very efficiently [9], it can be an

integrant part of an SWMS architecture and alleviate the effort on developing such

complex controls inside the SWMS engine’s source code. In this way, the SWMS de-

velopers can focus on specific concerns related to dataflow management (e.g., data de-

pendencies between tasks) instead of implementing distributed data management algo-

rithms and dealing with sophisticated distributed concurrency issues and contention at

scheduling queues. As centralized DBMSs, DDBMS also has query interfaces through

which users can query the continuously populated wf-Database. Therefore, SchalaDB

controls the parallel execution of workflows with a distributed task scheduling driven by

a DDBMS.

Architecture details. For execution control, the main supporting relation is the Work

Queue (WQ), which has the list of tasks to be scheduled and their data. SchalaDB dis-

tributes the WQ data across 퐷 data nodes. The data nodes are responsible for managing

the distributed data partitions playing the role of multiple masters. SchalaDB uses data-

base drivers to implement the connectors. Figure 1 illustrates SchalaDB.

 It is the main data provider for the SWMS engine’s distributed scheduler so that

worker nodes can submit queries to retrieve the data to be used in a scheduling decision

and a task execution. Instead of having workers requesting tasks to a master through

regular message passing, like in traditional task scheduling implementations, workers

send structured queries to the DDBMS. Instead of having a master to receive the worker

request; get the next ready tasks; and send them to the worker, the DDBMS uses its dis-

tributed data nodes to respond the multiple concurrent requests from the workers, di-

minishing contention. Regarding availability, the DDBMS can use replication to repli-

cate all relations, including the WQ relation. Since the wf-Database stores workflow

control data, input and output domain data composing the dataflow, and paths to large

scientific files stored on disk [6], it is not large and replication in the main-memory is

viable considering a cluster with multiple nodes, each with at least few gigabytes of

RAM. If a node hosting a WQ partition fails, there is still at least one extra replica that

may be utilized. To increase availability in the system, each worker may connect and

32nd SBBD – CTD – ISBN 978-85-7669-399-4 October 2-5, 2017 – Uberlândia, MG

165

query the DDBMS via two different database connector communications: the main

communication, represented by full gray lines in Figure 1 and the secondary communi-

cation by dashed gray lines. If one connector fails, workers connected to it just need to

connect to their secondary database connector. In addition, the secondary supervisor

node removes the single point of failure at the supervisor node. Data node’s availability

is outsourced to the DDBMS.

Figure 1. SchalaDB design. 푾 workers directly accessing the DDBMS composed of 푫 data nodes.

Figure 2. Chiron’s centralized architecture

relying on a centralized DBMS.

Figure 3. d-Chiron architecture. The gray boxes repre-

sent physical nodes in an HPC cluster.

Figure 4. Centralized scheduling with a

centralized DBMS.

Figure 5. DDBMS-driven scheduling.

Distributed Data Design. The WQ is typically the largest data structure for the sched-

uler in terms of number of elements. A distributed database design requires a partition-

ing strategy that matches the desirable number of partitions, and the placement of the

partitions [9]. To reduce load imbalance, SchalaDB distributes the WQ partitions across

the data nodes. The number of partitions is equal to the number 푊 of workers. Thus,

each worker has its own WQ partition to improve data parallelism by using different

memory spaces in parallel for each partition. Local processing is also improved because

32nd SBBD – CTD – ISBN 978-85-7669-399-4 October 2-5, 2017 – Uberlândia, MG

166

task lookup for each worker goes straight to its partition instead querying a large WQ.

This also reduces race condition among workers, which otherwise would be competing

for the entire WQ. Each worker 푤& only accesses its own 푊푄&(partition using queries

like “select/update the next ready tasks in the WQ where 푝푎푟푡푖푡푖표푛(= (푊푄&”.

 With respect to implementation, after trying multiple DDBMSs, we found that

MySQL Cluster would be the best fit, since SchalaDB needs OLTP for scheduling and

OLAP for runtime queries. In addition, it is open-source, scalable, can run fully in clus-

ter memory, and implements ACID transactions. Further details about why MySQL

Cluster was chosen over other options are discussed in [12]. In Figure 2, we show the

centralized architecture in Chiron. In Figure 3, we show how we implemented

SchalaDB in d-Chiron using MySQL Cluster. Figures 4 and 5 show a comparison of

centralized and distributed task scheduling driven by a centralized and distributed

DBMS, respectively. We can see that a DDBMS-driven scheduling eases scheduling

and reduces the overhead caused by message passing between master and workers.

3. Contributions and Concluding Remarks

Therefore, we are not aware of a SWMS solution that both allows for analytical queries

integrating domain data, provenance, and execution at runtime and is highly scalable.

We proposed a decentralized MTC task scheduler, which is the core of an HPC system,

using distributed data management techniques aiming at high performance for a SWMS.

This is the first work that frequently attains over 80% of parallel efficiency running on a

1,008 cores cluster while managing workflow data in a same database available for

runtime queries. Observing the tendency of the curves plotted in a comprehensive set of

performance tests [12], we could see that the solution could still scale if we had access

to an even larger cluster with at least few thousands of CPU cores. In addition to

benchmarking workflows, we successfully ran two real workflow case studies: one in

oil and gas and other in bioinformatics domains. Finally, we show that our implementa-

tion runs at least two orders of magnitude faster than the implementation that uses a

centralized data management and scheduling [12,15]. Besides the performance gains, by

using SchalaDB’s scheduling, a complex part of the SWMS engine source code can be

outsourced to a specialized system, i.e., the DDBMS. This dissertation was developed in

the context of a set of published works:

• The core ideas of SchalaDB and some results in d-Chiron were presented in the pres-

tigious ACM/IEEE Supercomputing conference as a poster [15].

• An approach to analyze performance data integrated with domain dataflow and prove-

nance was presented in [14]. We could quantify the performance bottlenecks that a

centralized scheduling was causing in Chiron SWMS. It motivated this work and won

the second-best paper award in the workshop. It also derived in [10], presented in a

workshop held in conjunction with ACM/IEEE Supercomputing.

• A strategy to publish data stored in the wf-Database on the semantic web using ontol-

ogy, RDF, and triple stores was presented in [2], which followed a linked data publi-

cation strategy presented in [11]. It ran for best poster award. It was derived from an

undergraduate dissertation that I co-supervised.

• A DDBMS-driven approach for fault tolerance in SWMSs [5]. It is part of an under-

graduate dissertation that I co-supervised.

32nd SBBD – CTD – ISBN 978-85-7669-399-4 October 2-5, 2017 – Uberlândia, MG

167

• The results of the dissertation have contributed to a new direction of research related

to data reduction in scientific workflows, presented in a workshop in conjunction with

Supercomputing [8]. Even though it has additional work, developed after the disserta-

tion, we consider it a derived result from the scalability of d-Chiron.

References

[1] Atkinson, M., Gesing, S., Montagnat, J., Taylor, I. Scientific workflows: past, present and

future. FGCS, 75:216–227, 2017.

[2] Castro, R., Souza, R., Sousa, V.S., Ocaña, K.A.C.S., Oliveira, D. de, Mattoso, M. Uma abor-

dagem para publicação de dados de proveniência de workflows científicos na web semântica.

Simpósio Brasileiro de Banco de Dados, 1–6, 2015.

[3] Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani, R.,

Chen, W., Ferreira da Silva, R., et al. Pegasus, a workflow management system for science

automation. FGCS, 46(C):17–35, 2015.

[4] GitHub. d-Chiron Repository. Available at: github.com/hpcdb/d-Chiron

[5] Miranda, P. Um mecanismo de tolerância a falhas em execuções paralelas de workflows

apoiadas por banco de dados. BSc dissertation, UFRJ, 2015.

[6] Ogasawara, E., Dias, J., Oliveira, D., Porto, F., Valduriez, P., Mattoso, M. An algebraic ap-

proach for data-centric scientific workflows. PVLDB, 4(12):1328–1339, 2011.

[7] Oliveira, D., Costa, F., Silva, V., Ocaña, K., Mattoso, M. Debugging scientific workflows

with provenance: achievements and lessons learned. Simpósio Brasileiro de Banco de Da-

dos, 1–10, 2014.

[8] Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M. SciCumulus: a lightweight cloud mid-

dleware to explore many task computing paradigm in scientific workflows. IEEE Int. Conf.

on Cloud Computing, 378–385, 2010.

[9] Özsu, M.T., Valduriez, P. Principles of distributed database systems. 3 ed. New York,

Springer, 2011.

[10] Silva, V., Neves, L., Souza, R., Coutinho, A.L.G.A., Oliveira, D. de, Mattoso, M. Integrat-

ing domain-data steering with code-profiling tools to debug data-intensive workflows.

WORKS, 59–63, 2016.

[11] Souza, R., Cottrell, L., White, B., Campos, M.L., Mattoso, M. Linked open data publica-

tion strategies: Application in networking performance measurement data. ASE International

Conference on BigData/SocialCom/CyberSecurity, 1–7, 2014.

[12] Souza, R. Controlling the parallel execution of workflows relying on a distributed data-

base. MSc dissertation, COPPE/UFRJ, 2015.

[13] Souza, R., Silva, V., Coutinho, A.L.G.A., Valduriez, P., Mattoso, M. Online input data

reduction in scientific workflows. WORKS, 44–53, 2016.

[14] Souza, R., Silva, V., Neves, L., De Oliveira, D., Mattoso, M. Monitoramento de desempe-

nho usando dados de proveniência e de domínio durante a execução de aplicações científi-

cas. Workshop em Desempenho de Sistemas Computacionais e de Comunicação, 1–14, 2015.

[15] Souza, R., Silva, V., Oliveira, Daniel, Valduriez, P., Lima, A.A.B., Mattoso, M. Parallel

execution of workflows driven by a distributed database management system. Poster in

IEEE/ACM Supercomputing, 1–3, 2015.

[16] Wozniak, J.M., Armstrong, T.G., Wilde, M., Katz, D.S., Lusk, E., Foster, I.T. Swift/T:

large-scale application composition via distributed-memory dataflow processing. IEEE/ACM

Int. Symp. Cluster, Cloud and Grid Computing, 95–102, 2013.

32nd SBBD – CTD – ISBN 978-85-7669-399-4 October 2-5, 2017 – Uberlândia, MG

168

